Skip to main content

2024 | OriginalPaper | Buchkapitel

13. Stärke

verfasst von : Ololade Olatunji

Erschienen in: Aquatische Biopolymere

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Stärke spielt eine bedeutende Rolle in der Wirtschaft, da sie als Quelle für zwei Produkte dient; Nahrung und Bioethanol, beides sind wesentliche Güter. Sie wird auch in mehreren anderen Industrien verwendet und in diesem Kapitel diskutiert. In der aquatischen Umgebung kann Stärke aus Wasserpflanzen und Algen gewonnen werden. Stärkeproduzierende aquatische Organismen sollen eine bedeutende Rolle bei der Produktion von Biokraftstoff der dritten Generation spielen, der ohnehin begrenztes Ackerland für den Anbau nicht benötigt. Die einzigartige Chemie einiger aquatischer Stärkeformen macht sie attraktiv für spezifische industrielle Anwendungen.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andrade LR, Farina M, Amado GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125PubMedCrossRef Andrade LR, Farina M, Amado GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125PubMedCrossRef
Zurück zum Zitat Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: genotyping technologies for the Lemnaceae. Chin J Appl Environ Biol 19:1–10CrossRef Appenroth KJ, Borisjuk N, Lam E (2013) Telling duckweed apart: genotyping technologies for the Lemnaceae. Chin J Appl Environ Biol 19:1–10CrossRef
Zurück zum Zitat Beloshapka A, Buff P, Fahey G, Swanson K (2016) Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 5:23–32PubMedPubMedCentralCrossRef Beloshapka A, Buff P, Fahey G, Swanson K (2016) Compositional analysis of whole grains, processed grains, grain co-products, and other carbohydrate sources with applicability to pet animal nutrition. Foods 5:23–32PubMedPubMedCentralCrossRef
Zurück zum Zitat Bhat FM, Riar CS (2016) Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int J Biol Macromol 92:637–664PubMedCrossRef Bhat FM, Riar CS (2016) Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int J Biol Macromol 92:637–664PubMedCrossRef
Zurück zum Zitat Chia SR, Ong HC, Chew KW, Show PL, Phang SM, Ling TC, Nagarajan D, Lee DJ, Chang JS (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129(Part B):838–852CrossRef Chia SR, Ong HC, Chew KW, Show PL, Phang SM, Ling TC, Nagarajan D, Lee DJ, Chang JS (2018) Sustainable approaches for algae utilisation in bioenergy production. Renew Energy 129(Part B):838–852CrossRef
Zurück zum Zitat Dauvillee D, Deschamps P, Ral J, Plancke C, Puteaux J, Devassine J, Durand-Terrasson A, Devin A, Ball SG (2009) Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. PNAS 106(50):21126–21130PubMedPubMedCentralCrossRef Dauvillee D, Deschamps P, Ral J, Plancke C, Puteaux J, Devassine J, Durand-Terrasson A, Devin A, Ball SG (2009) Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii. PNAS 106(50):21126–21130PubMedPubMedCentralCrossRef
Zurück zum Zitat Edison S, Srinivas T (2016) Status of cassava in India an overall view. Crops 46:7–172 Edison S, Srinivas T (2016) Status of cassava in India an overall view. Crops 46:7–172
Zurück zum Zitat Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Comparison of carbon budget, evapotranspiration and albedo effect between the biofuel crops switchgrass and corn. Agr Ecosyst Environ 231:271–282CrossRef Eichelmann E, Wagner-Riddle C, Warland J, Deen B, Voroney P (2016) Comparison of carbon budget, evapotranspiration and albedo effect between the biofuel crops switchgrass and corn. Agr Ecosyst Environ 231:271–282CrossRef
Zurück zum Zitat Fournet I, Zinoun M, Deslandes E, Diouris M, Yves Floch J (2000) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur J Phycol 34:125–130CrossRef Fournet I, Zinoun M, Deslandes E, Diouris M, Yves Floch J (2000) Floridean starch and carrageenan contents as responses of the red alga Solieria chordalis to culture conditions. Eur J Phycol 34:125–130CrossRef
Zurück zum Zitat Fujita M, Mori K, Kodera T (1999) Nutrient removal and starch production through cultivation of Wolffia arrhiza. J Biosci Bioeng 87(2):194–198PubMedCrossRef Fujita M, Mori K, Kodera T (1999) Nutrient removal and starch production through cultivation of Wolffia arrhiza. J Biosci Bioeng 87(2):194–198PubMedCrossRef
Zurück zum Zitat Gifuni I, Oliveri G, Krauss IR, D’Errico G, Pollio A, Marzocchella A (2017) Microalgae as new sources of starch: isolation and characterization of microalgal starch granules. Chem Eng Trans 57:1423–1428 Gifuni I, Oliveri G, Krauss IR, D’Errico G, Pollio A, Marzocchella A (2017) Microalgae as new sources of starch: isolation and characterization of microalgal starch granules. Chem Eng Trans 57:1423–1428
Zurück zum Zitat Ingle KNKN, Polikovsky M, Chemodanov A, Goldberg A (2018) Marine integrated pest management (MIPM) approach for sustainable agriculture. Algal Res 29:223–232CrossRef Ingle KNKN, Polikovsky M, Chemodanov A, Goldberg A (2018) Marine integrated pest management (MIPM) approach for sustainable agriculture. Algal Res 29:223–232CrossRef
Zurück zum Zitat Korzen L, Abelson A, Israel A (2016) Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28:1835–1845CrossRef Korzen L, Abelson A, Israel A (2016) Growth, protein and carbohydrate contents in Ulva rigida and Gracilaria bursa-pastoris integrated with an offshore fish farm. J Appl Phycol 28:1835–1845CrossRef
Zurück zum Zitat Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J (2018) Evidence that the great pacific garbage patch is rapidly accumulating plastic. Nat Sci Rep 8:4666 Lebreton L, Slat B, Ferrari F, Sainte-Rose B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier A, Noble K, Debeljak P, Maral H, Schoeneich-Argent R, Brambini R, Reisser J (2018) Evidence that the great pacific garbage patch is rapidly accumulating plastic. Nat Sci Rep 8:4666
Zurück zum Zitat Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG (2015) Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohyd Polym Li M, Witt T, Xie F, Warren FJ, Halley PJ, Gilbert RG (2015) Biodegradation of starch films: the roles of molecular and crystalline structure. Carbohyd Polym
Zurück zum Zitat Li Y, Zhang F, Daroch M, Tang J (2016) Positive effects of duckweed polycultures on starch and protein accumulation. Biosci Rep 36(00380):1–8 Li Y, Zhang F, Daroch M, Tang J (2016) Positive effects of duckweed polycultures on starch and protein accumulation. Biosci Rep 36(00380):1–8
Zurück zum Zitat Liu W, Halley PJ, Gilbert RG (2010) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43(6):2855–2864CrossRef Liu W, Halley PJ, Gilbert RG (2010) Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules 43(6):2855–2864CrossRef
Zurück zum Zitat Liu G, Gu Z, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges and strategies for potential pharmaceutical application. J Controlled Release 252:95–107CrossRef Liu G, Gu Z, Hong Y, Cheng L, Li C (2017) Electrospun starch nanofibers: recent advances, challenges and strategies for potential pharmaceutical application. J Controlled Release 252:95–107CrossRef
Zurück zum Zitat Liu Y, Wang X, Fang Y, Huang M, Chen X, Zhang Y, Zhao H (2018) The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation. Ind Crops Prod 115:243–249CrossRef Liu Y, Wang X, Fang Y, Huang M, Chen X, Zhang Y, Zhao H (2018) The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation. Ind Crops Prod 115:243–249CrossRef
Zurück zum Zitat Lopez-Llorca LV, Valiente MFC (1993) Study of biodegradation of starch plastic films in soil using scanning electron microscopy. Micron 457–463CrossRef Lopez-Llorca LV, Valiente MFC (1993) Study of biodegradation of starch plastic films in soil using scanning electron microscopy. Micron 457–463CrossRef
Zurück zum Zitat Maurer HW (2009) Starch in the paper industry. In: Starch, 3. Aufl. Food science and technology, S 657–713 Maurer HW (2009) Starch in the paper industry. In: Starch, 3. Aufl. Food science and technology, S 657–713
Zurück zum Zitat McCracken DA, Cain JR (1980) Amylose in floridean starch. New Phytol 88:67–71CrossRef McCracken DA, Cain JR (1980) Amylose in floridean starch. New Phytol 88:67–71CrossRef
Zurück zum Zitat McWilliams A (2017) Biodegradable polymers. BCC Research, Wellesley, MA, USA McWilliams A (2017) Biodegradable polymers. BCC Research, Wellesley, MA, USA
Zurück zum Zitat Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(221):1–17 Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Lal B, Subudhi S, Bhaskar T, Mouradov A (2016) Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels 9(221):1–17
Zurück zum Zitat Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A (2014) Dual application of duckweed and Azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7(30):1–17 Muradov N, Taha M, Miranda AF, Kadali K, Gujar A, Rochfort S, Stevenson T, Ball AS, Mouradov A (2014) Dual application of duckweed and Azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels 7(30):1–17
Zurück zum Zitat Muthuvelan B, Noro T, Nakamura K (2002) Effect of light quality on the cell integrity in marine alga Ulva pertusa (Chlorophyceae). Indian J Mar Sci 31:21–25 Muthuvelan B, Noro T, Nakamura K (2002) Effect of light quality on the cell integrity in marine alga Ulva pertusa (Chlorophyceae). Indian J Mar Sci 31:21–25
Zurück zum Zitat Negm NA, Zahran MK, Elshafy MRA, Aiad AI (2018) Transformation of Jatropha oil to biofuel using transition metal salts as heterogeneous catalysts. J Mol Liq 256:16–21CrossRef Negm NA, Zahran MK, Elshafy MRA, Aiad AI (2018) Transformation of Jatropha oil to biofuel using transition metal salts as heterogeneous catalysts. J Mol Liq 256:16–21CrossRef
Zurück zum Zitat Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18(4):447–472CrossRef Penfound WT, Earle TT (1948) The biology of the water hyacinth. Ecol Monogr 18(4):447–472CrossRef
Zurück zum Zitat Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Goldberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227CrossRef Prabhu M, Chemodanov A, Gottlieb R, Kazir M, Goldberg A (2019) Starch from the sea: the green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. Algal Res 37:215–227CrossRef
Zurück zum Zitat Rahman M, Roy TS, Chowdhury IF (2016) Biochemical composition of different potato varieties for processing industry in Bangladesh. Agric Sci Pract 2:81–89 Rahman M, Roy TS, Chowdhury IF (2016) Biochemical composition of different potato varieties for processing industry in Bangladesh. Agric Sci Pract 2:81–89
Zurück zum Zitat Reddy DK, Bhotmange MG (2014) Viscosity of starch: a comparative study of Indian rice (Oryza sativa L.) varieties. Int Rev Appl Eng Res 4:397–402 Reddy DK, Bhotmange MG (2014) Viscosity of starch: a comparative study of Indian rice (Oryza sativa L.) varieties. Int Rev Appl Eng Res 4:397–402
Zurück zum Zitat Robyt J (2008) Starch: structure, properties, chemistry and enzymology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, Heidelberg Robyt J (2008) Starch: structure, properties, chemistry and enzymology. In: Fraser-Reid BO, Tatsuta K, Thiem J (eds) Glycoscience. Springer, Berlin, Heidelberg
Zurück zum Zitat Sarka E, Dvoracek V (2017) Waxy starch as a perspective raw material (a review). Food Hydrocolloids 69:402–409CrossRef Sarka E, Dvoracek V (2017) Waxy starch as a perspective raw material (a review). Food Hydrocolloids 69:402–409CrossRef
Zurück zum Zitat Schellart JA, Visser FMW, Zandstra T, Middelhoven WJ (1976) Starch degradation by the mould Trichoderma viride I. The mechanism of starch degradation. Antonie van Leeuwenhoek 42:229PubMedCrossRef Schellart JA, Visser FMW, Zandstra T, Middelhoven WJ (1976) Starch degradation by the mould Trichoderma viride I. The mechanism of starch degradation. Antonie van Leeuwenhoek 42:229PubMedCrossRef
Zurück zum Zitat Sjöö LM, Nilson L (2018) Starch in food: structure, function and applications, 2. Aufl. Elsevier, S 58 Sjöö LM, Nilson L (2018) Starch in food: structure, function and applications, 2. Aufl. Elsevier, S 58
Zurück zum Zitat Smith JL, Summers G, Wong R (2010) Nutrient and heavy metal content of edible seaweeds in New Zealand. N Z J Crop Hortic Sci 38:19–28CrossRef Smith JL, Summers G, Wong R (2010) Nutrient and heavy metal content of edible seaweeds in New Zealand. N Z J Crop Hortic Sci 38:19–28CrossRef
Zurück zum Zitat Sullivan-Trainor M (2013) Starches/glucose, global markets. BCC Research, Wellesley, MA, USA Sullivan-Trainor M (2013) Starches/glucose, global markets. BCC Research, Wellesley, MA, USA
Zurück zum Zitat Teli MD, Rohera P, Sheikh J, Singhal R (2009) Application of germinated maize starch in textile printing. Carbohyd Polym 75(4):599–603CrossRef Teli MD, Rohera P, Sheikh J, Singhal R (2009) Application of germinated maize starch in textile printing. Carbohyd Polym 75(4):599–603CrossRef
Zurück zum Zitat Urbanek AK, Rymowicz W, Mironczuk AM (2018) Degradation of plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678PubMedPubMedCentralCrossRef Urbanek AK, Rymowicz W, Mironczuk AM (2018) Degradation of plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678PubMedPubMedCentralCrossRef
Zurück zum Zitat Wang Y, Pan S, Jiang Z, Liu S, Feng Y, Gu Z, Li C, Li Z (2019) A novel maltooligosaccharide forming amylase from Bacillus stearothermophilus. Food Biosci 30:100415CrossRef Wang Y, Pan S, Jiang Z, Liu S, Feng Y, Gu Z, Li C, Li Z (2019) A novel maltooligosaccharide forming amylase from Bacillus stearothermophilus. Food Biosci 30:100415CrossRef
Zurück zum Zitat Xu J, Zhao H, Stomp AM, Cheng JJ (2012) The production of duckweed as a source of biofuels. Biofuels 3:589–601CrossRef Xu J, Zhao H, Stomp AM, Cheng JJ (2012) The production of duckweed as a source of biofuels. Biofuels 3:589–601CrossRef
Zurück zum Zitat Xu J, Stomp A, Cheng J (2014) The production of duckweed as a source of biofuels. Biofuels 3(5):589–601CrossRef Xu J, Stomp A, Cheng J (2014) The production of duckweed as a source of biofuels. Biofuels 3(5):589–601CrossRef
Zurück zum Zitat Xu Y, Fang Y, Li Q, Yang G, Guo L, Chen G, Tan L, He K, Jin Y, Zhao H (2018) Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind Crops Prod 124:108–114CrossRef Xu Y, Fang Y, Li Q, Yang G, Guo L, Chen G, Tan L, He K, Jin Y, Zhao H (2018) Turion, an innovative duckweed-based starch production system for economical biofuel manufacture. Ind Crops Prod 124:108–114CrossRef
Zurück zum Zitat Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444PubMedCrossRef Yao C, Ai J, Cao X, Xue S, Zhang W (2012) Enhancing starch production of a marine green microalga Tetraselmis subcordiformis through nutrient limitation. Bioresour Technol 118:438–444PubMedCrossRef
Zurück zum Zitat Yew GY, Lee SY, Show PL, Tao Y, Law LC, Nguyen TTC, Chang J (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:10027 Yew GY, Lee SY, Show PL, Tao Y, Law LC, Nguyen TTC, Chang J (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:10027
Zurück zum Zitat Yu S, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch/Staerke 54:66–74CrossRef Yu S, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch/Staerke 54:66–74CrossRef
Zurück zum Zitat Zhang W, Zhao Y, Cui B, Wang H, Liu T (2016) Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresour Technol 220:407–413PubMedCrossRef Zhang W, Zhao Y, Cui B, Wang H, Liu T (2016) Evaluation of filamentous green algae as feedstocks for biofuel production. Bioresour Technol 220:407–413PubMedCrossRef
Zurück zum Zitat Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z, Yu Z (2018) Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour Technol 250:449–456PubMedCrossRef Zhang L, Pei H, Chen S, Jiang L, Hou Q, Yang Z, Yu Z (2018) Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour Technol 250:449–456PubMedCrossRef
Zurück zum Zitat Ziegler P, Adelmann K, Zimmer S, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol 17:33–41PubMedCrossRef Ziegler P, Adelmann K, Zimmer S, Appenroth KJ (2015) Relative in vitro growth rates of duckweeds (Lemnaceae) – the most rapidly growing higher plants. Plant Biol 17:33–41PubMedCrossRef
Metadaten
Titel
Stärke
verfasst von
Ololade Olatunji
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-48282-3_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.